Ⅰ. 서 론
방사선치료는 의료용 방사선을 이용해서 종양세포를 치 료하는 기술이다. 방사선은 환자 몸을 통과하여 종양세포를 파괴하는데 필요한 선량을 전달한다. 환자에게 직접적인 측 정을 수행하기가 어렵기 때문에 전산모사는 방사선치료 전 에 방사선의 실제 선량분포를 추정하는 역할을 하게 된다. 치료 전 전산모사는 품질관리와 선량제한치 역할을 수행한 다. 임상결과를 최적화하기 위해서 선량분포평가는 진보된 계산 기술이 요구되는 중요한 부분이다. 치료계획시스템의 전산모사를 통해 계산된 선량분포가 표적기관에 정확한 선 량을 전달하는 것이 방사선치료의 성공적인 요소 중에 하나 가 된다.
방사선치료 분야의 기술 발달을 위해 정교한 선량분포를 계산하기 위한 방법이 필요하다. 선량분포는 선량 계산 알 고리즘을 사용해서 만들어진다. 분석적 계산에 기반한 알고 리즘은 합리적인 정확성을 제공한다.[1] 또한 몬테카를로 전 산모사 알고리즘을 사용해서 정확성에 도달될 수 있다. 몬 테카를로 전산모사는 일차, 이차 입자에서 방출된 선량을 계산함으로써 체적 내에 선량분포를 전산모사하는 것이 가 능하며, 이 방법에 기반한 선량 계산은 알고리즘들 중에서 하나의 정확한 도구로 간주된다.[2-5]
의료용 선형가속기는 고에너지 광자선이나 전자선을 발 생시키는 가속장치이다. 선형가속기 빔 특성을 파악하기 위 해서 여러 연구가 수행되었다. 몇몇 연구자들은 광자와 전 자빔을 위한 방사선치료계획분포를 연구하기 위해서 몬테 카를로 전산모사를 적용하였다. 몬테카를로 전산모사는 방 사선치료분야에 있어서 전리방사선 수송을 구현하기 위한 알고리즘이다. 방사선치료에서 실제 상태를 기술할 수 있기 때문에 복잡한 기하학적 모양과 물질 성분, 입자의 상호작 용을 구현하는데 사용된다. 종류로는 BEAMnrc, MCNP, PENELOPE, Geant4 코드 등이 있으며, 이 중에 Geant4 코드는 물질을 통과하는 입자 경로를 전산모사하는 객체 지 향형의 툴킷이다.[6] 이 코드는 C++ 클래스와 라이브러리 의 집합체이고, 물리적 입자추적과 상호작용을 위한 기하학 적 배치, 모델과 같은 기능을 보유한다. 고에너지물리, 방사 선 방호, 의료물리 등에 적용할 수 있다. Geant4 코드를 사 용한 몬테카를로 전산모사는 선량 계산에 사용될 수 있으 며, 방사선치료선량을 증명하기 위한 주요한 방법이다.
몬테카를로 전산모사를 이용하여 치료 장비의 선량분포 를 검증하는 것은 치료의 신뢰성과 현실성을 향상시킬 수 있다. 따라서 본 연구에서는 선형가속기에 있어서 선량분포 의 정확성에 대한 몬테카를로 전산모사의 유효성을 검증해 보고자 한다. 본 연구는 다음과 같이 구성하였다. Geant4 코드의 계산된 선량자료와 선형가속기의 측정된 선량자료 를 비교하여 검증하였다. 선형가속기 머리부의 기하학적 모 델을 구현하였고, 균질물팬텀내에서 선량분포를 측정하였 다. Geant4 코드의 정확한 선량 계산을 얻기 위해서 선형가 속기로부터 6 MV 광자선의 에너지 스펙트럼을 추출하였고, 백분깊이선량(percentage depth dose)과 빔측면도(beam profile)에 대한 선량분포를 분석하였다.
Ⅱ. 대상 및 방법
1. Geant4 코드의 전산모사
방사선에 관한 전산모사를 수행하기 위해서, 리눅스 운영 체제(Ubuntu) 컴퓨터에 설치된 Geant4 코드(ver. 10.2)를 사용하였다. Varian사의 선형가속기 Clinac iX에서 발생한 6 MV 광자선을 전산모사하였다. 빔 선질에 영향을 미치는 선형가속기 구조로 머리부 구성 요소를 모델링하였다. 기하 학적 모델로 타겟, 일차콜리메이터, 선속평탄여과판, 모니 터 이온챔버, 거울, 이차콜리메이터를 고려하였다. 선속평 탄여과판은 일차콜리메이터 아래에 위치하고, 두 쌍의 이차 콜리메이터는 빔의 모양을 만드는데 사용된다. 세부 묘사를 위한 관련 자료는 Varian사에서 제공하는 Monte Carlo Data Package를 참고하였고, 이를 전산모사 모델링을 위한 입력 자료로써 사용하였다. Fig. 1은 Geant4 코드를 이용하 여 나타낸 선형가속기 머리부의 기하학적 구조이다. 기하학 적 체적을 시각적으로 점검하기 위해서 OpenGL viewer 그 래픽 인터페이스를 적용하였다.
선원을 정의하기 위해서 Geant4 코드에서 실행되는 몬 테카를로 발생기 GPS(General Particle Source)를 이용하 였다. Daryoush SB 등이 획득한 6 MV 스펙트럼 자료를 이용하였고, 0부터 6 MeV까지 에너지 스펙트럼 자료를 /gps/hist/point 옵션을 이용하여 매크로 파일에 입력하였 다.[7] 방사선치료에 대한 광자와 하전 입자의 수송을 만들 기 위해 G4EmStandardPhysics_option3 (EMY) 전자기 물 리모델을 적용하였다.[8,9] 이차 입자 생성을 위한 생성 문 턱치는 0.1 mm로 설정하였고, 이력수는 2×107을 시행하 였다.
2. 빔모델링 검증 및 백분깊이선량과 빔측면도의 비교
전산모사한 선형가속기 머리부의 검증으로 광자의 에너 지 스펙트럼을 측정하였다. 모니터 이온챔버 아래에 가상의 원통형 검출기를 위치시켰고, 기하학적 구조를 재구성하여 광자가 발생하는 선원항에서 광자의 전산모사를 실시하 였다.[10] SensitiveDetector의 ProcessHits 함수 내에 PreStepPoint에서의 운동에너지 값을 출력하는 코드를 작 성하였으며, GetKineticEnergy 값을 획득하였다. 0.1 MeV 구간별로 확률분포를 구하였고, 전산모사의 스펙트럼 자료 를 히스토그램으로 출력하였다.
선형가속기의 커미셔닝 자료는 물팬텀내에서 측정된 백 분깊이선량과 빔측면도로 구성하였고, 이를 Geant4 코드에 서 계산된 선량 분포와 측정 자료를 비교하였다. 물팬텀의 측정은 IAEA TRS-398 권고안에 근거하여 빔의 자료 수집 이 이루어졌다.[11] 선량 계산에 사용된 물팬텀 크기는 60 × 60 × 45(폭, 깊이, 높이)cm3였다. 실험은 원통형 전리함 (CC13)과 Blue Water Phantom(IBA Dosimetry, Germany) 을 사용해서 측정하였다. 6 MV 광자선빔이 선량률 400 MU/min으로 조사되었고, DOSE1 전기계를 사용하였다. 선 원표면간거리는 100 cm로 설정하였고, 조사면 크기는 10 × 10, 15 × 15 cm2 두 가지로 시행하였다. 백분깊이선량 곡선은 중심축에서 스캔하였고, 물표면 0 cm에서 물팬텀내 깊이 31 cm의 값을 계산하였다. 빔측면도 곡선은 유효깊이 10 cm에서 측정하였고, 10 × 10 cm2 조사면 크기의 스캔 범위는 횡단면 방향으로 -13.5 cm에서 +13.5 cm였고, 15 × 15 cm2 조사면 크기에서는 횡단면 방향으로 -16.25 cm 에서 +16.25 cm였다. 백분깊이선량과 빔측면도는 각각 최 대선량깊이와 선량분포 중심축에 정규화를 시켰다. 백분깊 이선량과 횡단선 빔측면도의 복셀 크기는 각각 5 × 5 × 2 mm3, 2 × 5 × 5 mm3으로 적용하였다. 물팬텀을 mother volume으로 설정하였고 내부에 G4Box를 위치시켰다. 상대 선량을 계산하기 위해서 흡수에너지를 수집하였다.
Fig. 2는 백분깊이선량과 빔측면도 그래프의 분석 기준 이고, Table 1은 허용오차범위를 나타낸다.[12,13] 계산과 측정 결과의 차이는 백분율 차이와 거리 차이로써 표현하였 다. δ1(delta)에서 δ4는 백분율 차이에 해당되고, RW50과 δ50-90은 거리 차이에 해당된다. 관심 영역 내에서 두 분포 사이의 일치를 확인하였다. 통계적 분석 방법으로 SPSS 통 계 프로그램을 사용하여 일표본 t-검정을 시행하였고, 유의 수준은 0.05 값으로 설정하였다.
Ⅲ. 결 과
Fig. 3은 Geant4 코드에 의해 생성된 에너지 스펙트럼 분포이다. 스펙트럼은 에너지 0.001 MeV부터 5.991 MeV 까지 관찰되었다. 피크값 위치는 0.2 MeV에서 0.3 MeV 사 이였고, 최대운동에너지는 약 6.0 MeV를 나타냈다. 광자선 의 평균에너지는 1.69 MeV였다. Mesbahi 등이 연구한 평 균에너지 계산결과값은 1.67 MeV였고, 본 연구와 비교하여 1.19%의 오차를 보였다.[14] Baumgartner 등이 연구한 계 산결과값은 1.65 MeV였고, 본 연구와 비교하여 2.39%의 오 차를 보였다.[15]
Fig. 4는 10 × 10 cm2와 15 × 15 cm2 조사면 크기의 선 량분포를 2차원 히스토그램으로 나타낸 것으로 Geant4 코 드에서 획득한 X-Z면의 흡수에너지를 보여준다. 물팬텀을 X축과 Z축 방향으로 각각 200개의 Replica를 설정하였다. 선원항에서 가장 먼 거리에 위치할 때 가장 낮은 계수가 발 생하였고, Replica [Z]의 수치가 0.0에 가까울수록 색상은 짙은 파란색 계열로 묘사하였다. 15 × 15 cm2 조사면 크기 는 산란선의 영향이 커지기 때문에 10 × 10 cm2 조사면 크 기보다 더 큰 계산 선량값이 나타났다.
Table 2는 10 × 10 cm2 조사면 크기와 15 × 15 cm2 조 사면 크기에 해당되는 결과이다. 백분깊이선량의 중심축상 δ1은 10 × 10 cm2 조사면 크기에서는 –1.60%였고, 15 × 15 cm2 조사면 크기는 –1.25%로써 2% 허용치 이내로 나타 났고 통계적으로 유의하지 않았다. 백분깊이선량의 선량증 가영역에 해당되는 δ2는 모두 10% 허용치 이내로 나타났 다. 10 × 10 cm2 조사면 크기에서 유의확률은 0.041로 나 타났으며, 이는 95% 신뢰수준에서 유의하였다.
10 × 10 cm2 조사면 크기와 15 × 15 cm2 조사면 크기의 빔측면도 반음영 영역 δ2는 10% 허용치 이내로 나타났고, 두 조사면 크기에서 유의확률은 0.05보다 낮게 나타나서 통 계적으로 유의하였다. 외부중심축영역 δ3은 3% 허용치 이 내였고 통계적으로 유의하지 않았다. 바깥빔가장자리 δ4는 통계적으로 유의하지 않았고, 10 × 10 cm2 조사면 크기에 서는 –2.19%였고, 15 × 15 cm2 조사면 크기는 –3.06%로써 허용치 이내였다. 빔측면도의 반음영에서 최고치에 비례한 50%와 90% 사이의 거리를 나타내는 δ50-90은 허용치 2 mm 이내였고, 통계적으로 유의하지 않았다. 빔중심축상 값과 비교해 높이가 반절에서 측정된 빔측면도의 폭을 나타내는 RW50은 통계적으로 유의하지 않았고 2 mm 허용치 이내였다.
Ⅳ. 고 찰
몬테카를로 전산모사 알고리즘에 대한 방사선치료의 정확한 선량 계산을 증명하는 연구들이 있어 왔다.[16,17] Varian사의 선형가속기로부터 광자선 모델을 개발하기 위 해서 연구자들은 여러 개의 몬테카를로 전산모사를 사용해 왔다.[18-20] 본 연구에서는 Geant4 코드를 기반으로 하여 Varian사의 선형가속기 모델을 구현하였고, 선량분포의 검 증을 수행하였다.
초기 선형가속기의 커미셔닝 절차를 하는 동안에 광자선 측정 자료를 검증하고 결정하기 위한 측정이 수행되며, 이 에 근거하여 백분깊이선량과 빔측면도가 특정 기계에 적용 된다. 본 연구에서는 몬테카를로 전산모사를 이용하여 선형 가속기 머리부를 재구성함으로써 광자선의 선질을 결정하 였고, 전산모사로부터 획득한 에너지 스펙트럼 결과는 선행 연구들의 결과값과 유사한 결과를 나타내어 적절한 것으로 생각된다. Mesbahi 등의 연구와 Baumgartner 등이 연구 한 광자선의 평균에너지는 본 연구의 결과값과 비교하면 약 2.40% 차이를 나타내었는데, 그 이유는 모델링의 기하학적 구조와 스펙트럼의 측정 위치가 요인으로 작용했을 것으로 생각된다.[14,15]
10 × 10 cm2와 15 × 15 cm2 조사면 크기에 대한 Geant4 코드의 계산값과 선형가속기 커미셔닝 측정값의 백분깊이선 량 곡선을 비교한 결과에서, 백분율 차이의 관계를 깊이에 따라 관찰하였다. 두 조사면 크기의 중심축상 차이 δ1은 모 두 -2% 이내로 나타났다. 이것은 허용치 기준 내에서 용인 할 수 있는 일치를 보여준다. 선량증가영역 δ2에서 중심축 상 δ1과 비교하여 선량차이가 크게 나타났다. 10 × 10 cm2 와 15 × 15 cm2 조사면 크기의 선량증가영역 차이는 각각 –4.40%, -3.17% 이내였다. 10 × 10 cm2 조사면 크기의 유 의확률은 0.05 이하의 값으로 유의한 차이를 보였다. 선량증 가영역의 차이는 이전 연구들에서도 보고되었다. Mesbahi 등은 선량증가영역의 차이는 7%까지 증가하였다고 보고하 였으나, 본 연구에서는 최대 5% 이내의 차이를 보였다.[14] Sardari와 Ding 등은 선량증가영역에서는 몬테카를로 계 산 결과와 실험 측정 사이의 일관성이 낮다고 보고하였 다.[21.22] 전자 오염은 선량증가영역의 선량분포에 영향을 주고, 통계적으로 큰 변동이 이 영역에서 일어나게 된다. 본 연구에서는 Geant4 코드의 계산선량자료와 비교해볼 때 측 정선량자료가 선량증가영역에서 대부분 높게 나타났다. 여 기서 마이너스 기호는 측정 선량이 Geant4 코드에 의해 계 산된 선량보다 높게 평가된 것을 의미한다. 실험의 과대 평 가는 공동전리함 때문으로 볼 수 있다. CC13 전리함 모델 같은 경우에 0.13 cm3 공동의 체적이 작기 때문에 가파른 선량기울기가 존재하는 선량증가영역에서 선량측정을 과대 평가하게 된다. 이것은 물표면과 최대선량깊이 전인 백분깊 이선량 곡선 지점에서 하전입자평형의 결여가 존재하기 때 문이다.[23] 그리고 전산모사를 할 때 emstandard_opt2 물 리 모델을 이용한 실험이 다른 연구에서 진행되었다.[24] 선량증가영역에 대한 전산모사를 위해 다른 종류의 물리 모 델을 사용한 실험도 필요하다고 생각된다.
깊이 10 cm에서 빔측면도가 평가되었고 두 조사면 크기 에서 측정값과 차이를 분석하였다. 허용치 이내의 값을 나 타냈으며 용인할 수 있는 일치가 빔측면도에서도 획득되었 다. 두 조사면 크기의 분석 결과는 δ2영역에서 6% 이내로 측정 자료와 일치하였다. 분석결과 15 × 15 cm2 조사면 크 기에서 더 큰 차이를 보였다. δ3영역과 δ4영역은 허용치 이내였으며, 15 × 15 cm2 조사면 크기에서 차이가 더 현저 하였다. 반음영 영역인 δ2영역을 제외하고 나머지 영역에 서 일반적으로 ±4% 이내였고, 통계학적으로 유의하지 않 았다. δ50-90과 RW50은 허용치 이내로 나타났다. 흡수 에너 지의 곡선은 조사면 가장자리 가까이에서 감소하는 경향이 있고, 두 조사면 크기에서 최대 차이는 반음영 영역에서 나 타났다. 이 영역은 빠른 감소가 나타나기 때문에 높은 기울 기 선량이 존재한다. 반음영 영역에서 높은 선량 차이는 고 선량 기울기의 존재로 설명될 수 있다. 이러한 반음영 영역 의 차이는 선형가속기 머리부의 추가적인 전자의 상호작용 과 산란선 때문에 비롯된다. 반음영에 대한 곡선의 기울기 는 조사면 크기에 의존하였고, 15 × 15 cm2 조사면 크기에 서 더 급격하였다. 더 큰 조사면 크기로 되어 있는 빔측면도 는 에너지 스펙트럼을 생산하는 빔반지름폭, 평균전자에너 지, 에너지범위와 같은 초기전자조건의 변화에 더 크게 영 향을 받는다.[25,26] 그리고 에너지흡수곡선의 변동은 팬텀 물질의 산란에 의해 영향을 받는다. 다른 가능한 요소들도 본 연구에서 획득한 일치에 영향을 받는 것으로 보인다. 유 효에너지, 기하학적 구성 요소, 물질 성분, 물리 모델, 실험 자료 측정의 정확성이 영향을 줄 것이며, 이를 고려하여 선 량분포를 검증해야 할 것으로 생각된다.[27]
V. 결 론
본 연구에서는 몬테카를로 전산모사 기반 Geant4 코드를 이용해서 6 MV 선형가속기의 전산모사를 제시하였다. 본 연구는 Geant4 코드가 선형가속기 머리부를 모델링할 수 있다는 것을 보여주었다. 두 조사면 크기에 따른 Geant4 코 드로 획득한 계산선량결과는 측정선량자료와 허용치 이내 에서 일치함을 나타냈다. 본 실험은 Geant4 코드가 광자선 을 전산모사하는데 유효하다는 것을 나타낸다. 몬테카를로 전산모사의 정확성은 향상되어왔고, 초기 매개변수를 적용 함으로써 보다 복잡한 형태의 전산모사를 할 수 있을 것이 다. Geant4 코드는 선량 점검을 목적으로 선량 계산을 수행 할 요건을 갖추고 있는 것으로 생각된다.